
Lecture - 12

Introduction to operator overloading

Object manipulation

• Data members of objects are manipulated by calling the member
functions of the object

void main()

{ a object1;

object1.set(10);

}

Example

class a

{ int x;

public: void set(int i)

 {x=i; }

a add(a para1)

{ a ob; a.x=x+para1.x;

return(a);

} };

void main()

{

 a object1, object2,object3;

 object1.set(10);

 object2.set(20);

object3=object1.add(object2)

;

}

Can we use built in C++ operators for manipulating
objects?

void main()

{

 a object1, object2,object3;

 object1.set(10);

 object2.set(20);

 object3=object1+object2;

}

Operator overloading

• It is a process which enable C++ operators like +,-,* to work
with object

• For example, C++ language itself overloads the addition
operator (+) as these operators perform differently when used
with int, float and pointers.

Operator overloading (contd..)

• An operator is overloaded by writing a non-static member
function definition or global function definition

• The function name now becomes the keyword operator
followed by the symbol for the operator being overloaded, eg
+

Restrictions on operator
overloading

Operators that can be
overloaded
+ - / * % ^ & | ~ ! = < > += -= *= /= %= << >> == != <= >= && ||

++ -- , -> () new delete

Operators that cannot be
overloaded

.

::

?:

Contd..

• The associativity of an operator (left to right, or
right to left) cannot be changed by overloading

• It is not possible to change arity of an operator
(how many operands an operator takes)

• The meaning of how an operator works on
objects of fundamental types cannot be changed

Contd..

• It is not possible to create new operators

• Only existing can be overloaded

Class members vs. Global functions

• Operator functions can be member functions or global
functions

• Global functions are made friends

• Either way operator will be used the same way in expression

Which implementation is best?

• Operator member functions of specific class are called
(implicitly by compiler) only when left operand of a binary
operator is specifically an object of that class, or when the
single operand of a unary operator is an object of that class

Contd..

• If left operand must be an object of a different class or a
fundamental type, operator must be implemented as global
function

Example (unary operator -)
class point

{ int x,y,z;

 public:

 point(int d,int e, int f)

 { x=d; y=e; f=z; }

void display()

{cout<<x<<y<<z; }

void operator –()

{ x=-x; y=-y; z=-z; }

};

void main()

{

 point a(10,20,15);

 a.display();

 -a ;

 a.display();

}

